
February 15, 2011 Page 1 of 8

Visual Studio and the ANTLR C# Target

By Sam Harwell

1 Introduction
This document gives a basic overview of using ANTLR and its CSharp3 target with C# projects in Visual

Studio.

1.1 Visual Studio 2010 Support for ANTLR 3 Grammars
The following extension for Visual Studio 2010 offers preliminary support for ANTLR grammars. This is

an early release of this tool (and the first public one), so I value any feedback you may have. The tool

offers the following features.

 Syntax highlighting (Figure 1)

 Editor navigation bar (Figure 2)

 QuickInfo tooltips (Figure 3)

 Auto-completion (Figure 4)

 Project item templates for lexer, parser, combined, and tree grammars (Figure 5). These

templates DO NOT perform steps 1.2 to 1.5, so you’ll need to manually do that first. The

templates DO take care of the steps in section 2 automatically.

The extension and its small prerequisite can be downloaded from the following location.

 Tunnel Vision Labs’1 Visual Studio Extensibility Framework (prerequisite)

http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Framework.vsix

 Tunnel Vision Labs’ ANTLR 3 Language Support for Visual Studio 2010

http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Language.Antlr3.vsix

 Tunnel Vision Labs’ StringTemplate 4 Language Support for Visual Studio 2010

http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Language.StringTemplate4.v

six

1
 Tunnel Vision Laboratories, LLC: http://www.tunnelvisionlabs.com

http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Framework.vsix
http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Language.Antlr3.vsix
http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Language.StringTemplate4.vsix
http://www.tunnelvisionlabs.com/downloads/vsx/Tvl.VisualStudio.Language.StringTemplate4.vsix
http://www.tunnelvisionlabs.com/

February 15, 2011 Page 2 of 8

Figure 1. Syntax highlighting for ANTLR grammars

Figure 2. Editor navigation bars for parser and lexer rules

February 15, 2011 Page 3 of 8

Figure 3. QuickInfo tooltips for ANTLR v3 grammars

Figure 4. IntelliSense autocomplete for ANTLR v3 grammars

Figure 5. ANTLR project item templates for Visual C# projects

1.2 Base Project Layout
 C:\dev\CoolTool\

o CoolProject\

 CoolProject.csproj

o CoolTool.sln

February 15, 2011 Page 4 of 8

1.3 Adding ANTLR to the Project Structure
1. Download the ANTLR C# port from the following location:

http://www.tunnelvisionlabs.com/downloads/antlr/antlr-dotnet-csharp3bootstrap-

3.3.1.7705.7z

2. Extract the files to C:\dev\CoolTool\Reference\Antlr.

After these steps, your folder should resemble the following.

 C:\dev\CoolTool\

o CoolProject\...

o Reference\

 Antlr\

 CodeGen\...

 Targets\...

 Tool\...

 Antlr3.exe

 Antlr3.exe.config

 …

o CoolTool.sln

1.4 MSBuild Support for ANTLR
Since the steps include manual modification of the Visual Studio project files, I very strongly recommend

you back up your project before attempting this (whether or not you are already comfortable with

editing these files).

1. Open CoolTool.sln

2. Unload the CoolProject project (by right-clicking the project in Solution Explorer and selecting

Unload Project)

3. Open CoolProject.csproj for editing (by right-clicking the unloaded project in Solution Explorer

and selecting Edit CoolProject.csproj)

4. For reference, locate the following line:

5. After the line in step 4, add the code from Figure 6, below.

6. Save and close CoolProject.csproj.

7. Reload the CoolProject project (by right-clicking the project in Solution Explorer and selecting

Reload Project).

<Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />

http://www.tunnelvisionlabs.com/downloads/antlr/antlr-dotnet-csharp3bootstrap-3.3.1.7705.7z
http://www.tunnelvisionlabs.com/downloads/antlr/antlr-dotnet-csharp3bootstrap-3.3.1.7705.7z

February 15, 2011 Page 5 of 8

Figure 6. MSBuild targets file reference

1.5 Adding a Reference to the CSharp3 Runtime
1. In the CoolProject project, add a reference to Antlr3.Runtime.dll, which is located at

“C:\dev\CoolTool\Reference\Antlr\Antlr3.Runtime.dll”

2 Grammars
The generated classes are declared with the partial specifier, which encourages clean separation of

the grammar’s rules and helper code. When used with Visual Studio, this configuration also enables the

IDE’s C# features. The following table summarizes the files which get added to the project based on the

type of grammar you are writing.

Grammar Type Declaration Project Files

Lexer lexer grammar T; T.g
THelper.cs

Parser parser grammar T; T.g
THelper.cs

Combined (Lexer and Parser) grammar T; T.g
TLexerHelper.cs
TParserHelper.cs

Tree tree grammar T; T.g
THelper.cs

Table 1. User-created files by grammar type

2.1 Building Grammars with the Project
After adding a grammar T.g to the project, the following steps set the build action.

1. Right click the file T.g in Solution Explorer and select Properties.

2. In the Properties pane, set the Build Action to Antlr3, and set the Custom Tool to

MSBuild:Compile. This setting forces Visual Studio to update its IntelliSense information

about the generated code each time the grammar is modified and saved.

3 Custom Token Specifications (*.tokens)
The tokenVocab grammar option tells ANTLR to import tokens from a particular file. Normally, this file

is automatically generated while compiling another grammar from the same project, so there is no need

to locate it and add it to the project. However, if your grammar depends on a particular tokens file that

is not generated by a grammar in the same project, you’ll need to include the file in your build. After you

<PropertyGroup>
 <!-- Folder containing AntlrBuildTask.dll -->
 <AntlrBuildTaskPath>$(ProjectDir)..\Reference\Antlr</AntlrBuildTaskPath>
 <!-- Path to the ANTLR Tool itself. -->
 <AntlrToolPath>$(ProjectDir)..\Reference\Antlr\Antlr3.exe</AntlrToolPath>
</PropertyGroup>
<Import Project="$(ProjectDir)..\Reference\Antlr\Antlr3.targets" />

February 15, 2011 Page 6 of 8

add the tokens file to your project, set its Build Action to AntlrTokens to make it available as other

grammars in your project are compiled.

4 Extra Features in the CSharp3 Target

4.1 Rule Accessibility Modifiers
With the exception of lexer rules, an accessibility modifier may be added to each rule. The available

modifiers are public, protected, and private, with a default of private. The rule accessibility is

included in the generated code.

4.2 Tree Adaptor Initialization
A partial method CreateTreeAdaptor is generated, which allows the user to specify custom logic for

initializing the tree adaptor.

Figure 7. CreateTreeAdaptor for custom adaptors

4.3 Rule Entry and Exit
The following methods are called at the entry and exit of every rule.

Entry and exit partial methods are also generated for each rule rule:

4.4 Dynamic Attribute Scope Construction, Entry and Exit
Dynamic attribute scope classes are also declared with the partial specifier. The constructor for these

scopes calls the partial method OnCreated, which can be implemented as follows.

public rule1 : /*...*/ ;
protected rule2 : /*...*/ ;
private rule3 : /*...*/ ;

rule4 : /*...*/ ; // same as private

partial void CreateTreeAdaptor(ref ITreeAdaptor adaptor) {
 adaptor = new CommonTreeAdaptor();
}

partial void EnterRule(string ruleName, int ruleIndex);
partial void LeaveRule(string ruleName, int ruleIndex);

partial void EnterRule_rule();
partial void LeaveRule_rule();

February 15, 2011 Page 7 of 8

After a scope is pushed to the scope stack, the partial method ScopeName_scopeInit is called.

Likewise, the partial method ScopeName_scopeAfter is called immediately before the scope is

popped from the stack.

4.5 Rule Return Values
Parser rules with multiple return values return a generated class. This class is generated with the

partial specifier, and includes a constructor which calls the partial method OnCreated.

4.6 Extended AST Operators
Starting with release 3.3.1 of the C# port of ANTLR with the CSharp3 target, some extended features are

available for AST operators. These features allow the use of the more efficient AST operator syntax in

several common cases that previously required rewrite syntax.

Figure 8. Specifying the Type property of an AST node

partial class GrammarName {
 partial class GlobalScopeName_scope {
 partial void OnCreated(GrammarName grammar) {
 // called when the scope is created, before it’s pushed to the scope stack
 }
 }
}

partial class GrammarName {
 partial void GlobalScopeName_scopeInit(GlobalScopeName_scope scope) {
 // called immediately after the scope is pushed to the scope stack
 }
 partial void GlobalScopeName_scopeAfter(GlobalScopeName_scope scope) {
 // called immediately before the scope is popped from the scope stack
 }
}

partial class GrammarName {
 partial class RuleName_return {
 partial void OnCreated(GrammarName grammar) {
 // called when the return value is initialized
 }
 }
}

// rewrite syntax
rule
 : LPAREN elements RPAREN
 -> ^(VALUE[$LPAREN] elements)
 ;

// extended AST syntax
rule
 : LPAREN<VALUE>^ elements RPAREN!
 ;

February 15, 2011 Page 8 of 8

Figure 9. Specifying the Type and Text properties of an AST node

5 Example Grammars

5.1 Combined Grammar

Figure 10. Combined grammar T.g

Figure 11. Lexer helper file TLexerHelper.cs

Figure 12. Parser helper file TParserHelper.cs

// rewrite syntax
rule
 : LPAREN elements RPAREN
 -> ^(VALUE[$LPAREN, "value"] elements)
 ;

// extended AST syntax
rule
 : LPAREN<type=VALUE; text="value">^ elements RPAREN!
 ;

grammar T;

options {
 language=CSharp3;
 TokenLabelType=CommonToken; // Specifies the token type for parsers
 output=AST; // Specify AST creation
 ASTLabelType=CommonTree; // Specify tree node type for AST output
}

@lexer::namespace {CoolTool.CoolProject.Compiler}
@parser::namespace {CoolTool.CoolProject.Compiler}

// PARSER
//

public
compileUnit

: /*...*/ EOF
;

// LEXER
//

IDENTIFIER
 : ('a'..'z' | 'A'..'Z' | '_') ('a'..'z' | 'A'..'Z' | '0'..'9' | '_')*
 ;

namespace CoolTool.CoolProject.Compiler {
 partial class TLexer {
 }
}

namespace CoolTool.CoolProject.Compiler {
 partial class TParser {
 }
}

	1 Introduction
	1.1 Visual Studio 2010 Support for ANTLR 3 Grammars
	1.2 Base Project Layout
	1.3 Adding ANTLR to the Project Structure
	1.4 MSBuild Support for ANTLR
	1.5 Adding a Reference to the CSharp3 Runtime

	2 Grammars
	2.1 Building Grammars with the Project

	3 Custom Token Specifications (*.tokens)
	4 Extra Features in the CSharp3 Target
	4.1 Rule Accessibility Modifiers
	4.2 Tree Adaptor Initialization
	4.3 Rule Entry and Exit
	4.4 Dynamic Attribute Scope Construction, Entry and Exit
	4.5 Rule Return Values
	4.6 Extended AST Operators

	5 Example Grammars
	5.1 Combined Grammar

