Robinson Unification Algorithm in F#
Learning version

This is a learning version of the Robinson unification algorithm. A final different version will become part of a library for doing AST transformations.

I wrote the code in this un-factored manor to make it easy to understand without deciphering it from some other reference. While |1 know from personal
experience that the unification algorithm is not easy to learn, it can be even harder without someone guiding you. Hopefully this version is clear
enough to learn from on its own.

Unification Algorithm uses

AST transformations

Type Inference

Term rewriting

Theorem proving

Prolog

Natural language processing

Pattern matching

Combinatorial test case generation

Extract sub structures from structured data such as an XML document
0. Symbolic computation i.e. calculus

HBHoeoNok~wNE

There are several forms of the unification algorithm; the one here is associated with syntactic unification.
For a quick introduction to the unification algorithm see Wikipedia. You can skip the parts that mention the semantic or higher order forms.
See: Wikipedia: Unification

http://en.wikipedia.org/wiki/Unification_(computer_science)

module UnificationLearning

Unification algorithm

Portions Copyright (C) 2012 by Tomas Petricek
Copyright (C) 2012 by Eric Taucher

License:

Creative Commons BY-SA Version 3.0

This code is derived from a StackOverflow answer by Tomas Petricek
See: http://stackoverflow.com/a/9525471/1243762

In short, this is a reference and learning version, not a production version.

This is

an implementation of the Robinson algorithm without using unify to update unify's structures.

If you look carefully at most functional implementations of the Robinson unification algorithm you will see that they
are recursive and that they also use the unify function to update the internal structures.

It would be like using regular expressions inside of a regular expression engine.

You have to know regular expressions in order to understand the regular expression engine.

Works if you already know it, but for a first introduction, it is quite confusing.

Since this is my first use of a functional language, and I needed to understand the unification algorithm in detail,
I did this implementation, which is actually the last version in a series of axiomatic progressions;
thus the names with 900.

Because
Because
without
Because
instead

this was done as an axiomatic progression, it has full traceability for finding bugs.

of the way the sub functions are implemented it allows one to understand what is going on
having to compare the internal data structures before and after a function call.

of the way the sub functions are implemented, I can give meaningful names to each step,
of trying to factor out the steps in my head and keep track of the level of recursion.

type Exproeo =
| value9eo of int
| variable9ee of string
| Structure9e@ of string * Expr9ee list

type Substution900 =
| valueSubstution90e of string * int
| variableSubtution90@ of string * string
| StructureSubtution9e@ of string * string * Expr9ee list

// Define occurs check function
let rec occursIn var xs =
match xs with
| (value9e® y)::xsi -> occursIn var xsi
| (variable9e@ y)::xsl1 when var =y -> true
| (variable9e@ y)::xs1 when var <> y -> occursIn var xsi
| (Structuregee(s,1))::xsl ->
let result = occursIn var 1
match result with

| true -> true
| false -> occursIn var xsl
| 11 -> false

| _ -> failwith "How did we get here?"

let unify90@ xs ys =
// Define unify function
let rec unify xs ys mgu =
// Define replace function
let replace sub x y mgu =
// Define replacePattern function
let rec replacePattern sub xs =

// Define replacePatternUtil function
let rec replacePatternUtil sub xs acc =
match sub with
| valueSubstution9ee@(var,value)
match xs with

| (Structure9eo(f,1))::xsi -> replacePatternUtil sub xs1 ((Structure9ee(f, (replacePattern sub 1)))::acc)
| (variable9e@ x)::xsi when x = var -> replacePatternUtil sub xs1 ((Value900 value)::acc)

| (variable9eo x)::xsi -> replacePatternUtil sub xs1 ((Variable9e0@ x)::acc)

| (Value9ee x)::xsl -> replacePatternUtil sub xs1 ((Value90@ x)::acc)

| [

-> (List.rev acc)
| _ -> failwith "How did we get here?"
| variableSubtution9ee@(vari,var2) ->
match xs with

| (Structuregee(f,1))::xsi -> replacePatternUtil sub xs1 ((Structure9ee(f, (replacePattern sub 1)))::acc)
| (variable9e@ x)::xsi when x = varl -> replacePatternUtil sub xs1 ((Variable90@ var2)::acc)

| (variable9eo x)::xsi -> replacePatternUtil sub xsl1 ((Variable9e0@ x)::acc)

| (Value990 X)::xsl -> replacePatternUtil sub xs1 ((Value90@ x)::acc)

| [

-> (List.rev acc)
| _ -> failwith "How did we get here?"
| StructureSubtution9ee(var,f,1) ->
match xs with

| (Structuregee(f,1))::xsi -> replacePatternUtil sub xs1 ((Structure9ee(f, (replacePattern sub 1)))::acc)
| (variable9ee x)::xsi1 when x = var -> replacePatternUtil sub xsl1 ((Structure9e0(f,1))::acc)

| (variable9ee@ x)::xsi1 -> replacePatternUtil sub xs1 ((Variable90@0 x)::acc)

| (Value990 x)::xsl -> replacePatternUtil sub xs1 ((Value90@ x)::acc)

| [

-> (List.rev acc)
| _ -> failwith "How did we get here?"
// Call replacePatternUtil function

// printfn "Before replacePatternUtil: substution: %A pattern: %A" sub xs
let result = replacePatternUtil sub xs []
// printfn "After replacePatternUtil: substution: %A pattern: %A \n" sub result

// return result
result

// Define updateMgu function
let rec updateMgu sub mgu =
// Define replaceMguUtil function
let rec replaceMguUtil sub mgu acc =
match mgu with
| ((valueSubstution9ee(mguVar,mguTerm))::xs1)
-> replaceMguUtil sub xs1 ((ValueSubstution9e@(mguVar,mguTerm))::acc)
| ((variableSubtution9@@(mguVaril,mguVar2))::xs1)
-> replaceMguUtil sub xs1 ((VariableSubtution9@@(mguVarl,mguVar2))::acc)
| ((structureSubtution9e@(mguvar,f,1))::xs1)
-> replaceMguUtil sub xsl1 ((StructureSubtution9ee(mguVar,f, (replacePattern sub 1)))::acc)
| 11
-> (List.rev acc)
// Call replaceMguUtil function saving result
let replacedMgu = replaceMguUtil sub mgu []
// append the new substution to the updated mgu
// While this is not a best practice,
// its obvious that sub is being appended to the mgu
replacedMgu@[sub]
// Call unify function
unify (replacePattern sub x) (replacePattern sub y) (updateMgu sub mgu)

// Define unifyStructure function
// Note: The mgu from the structure, i.e. structureMgu, is passed as the mgu for the remaining unfication.
// If not, then how would the final mgu be able to include the mgu from the substructure?
let unifyStructure sl s2 xs ys mgu =
let (structureResult,structureMgu) = unify sl s2 mgu
match structureResult with
| true -> unify xs ys structureMgu
| false -> (false, [])

// Define unifyUtil function
let unifyUtil xs ys mgu =
match xs with
| (value9o@e x)::xs1l ->
match ys with

| (value9ee y)::ysi when x =y -> unify xs1 ys1 mgu

| (value9oe y)::ysl when x <>y -> (false, [])

| (variable9e@ y)::ysi -> replace (ValueSubstution900(y,x)) xsl ysl mgu
| (Structure9ee)::ysi -> (false, [1])

| [1 -> (false, [])

| _ -> failwith "How did we get here?"
| (variable9e@ x)::xs1 ->
match ys with

| (value9ee y)::ysi -> replace (ValueSubstution900(x,y)) xsl1 ysl mgu

| (variable9e@ y)::ysi when x =y -> unify xsl1 ysl mgu

| (variable9eo y)::ysi when x <>y -> replace (VariableSubtution900(x,y)) xsl ysl mgu

| (Sstructure9ee(si,11))::ysl when occursIn x 11 -> (false, [1])

| (Structure9ee(s1,11))::ysl -> replace (StructureSubtution900(x,s1,11)) xsl1l ysl mgu
| 1 -> (false, [])

| _ -> failwith "How did we get here?"
| (Structure9ee(s1,11))::xs1 ->
match ys with

| (value9eo y)::ysl -> (false, [])
(Variable90o y)::ysl when occursIn y 11 -> (false, [])
(Variable900 y)::ysl -> replace (StructureSubtution9e0(y,s1,11)) xsl1 ysl mgu

I
I
| (structure9ee(s2,12))::ysl when (s1 = s2) & & (lil.Length = 12.Length) -> unifyStructure 11 12 xsl ysl mgu
| (Structure9ee(s2,12))::ys1l when (s1 <> s2) || (1l1.Length <> 12.Length) -> (false, [])
| 1 -> (false, [])
| _ -> failwith "How did we get here?"
| [1 -> (true, mgu)
// Call unifyUtil function
unifyUtil xs ys mgu

// Call unify function
unify xs ys []

S e R e

//

Test x | f(x)

let unify90l =

//

//

let expro@l = [Variable900("x")]

let expro@2 = [Structure9ee("f",[Variable9eo("x")])]

printfn "Unify test: unify90l - \n\t expr 1: %A \n\t expr 2: %A" expro0l expro02
let result = unify900 expro@l expro02

let res, mgu = result

printfn "\t result: %b mgu: %A \n" res mgu

0K, that works

Test a,f(b,b) | 1,f(1,b)

let unify902 =

let expro@l = [Variable90@("a");Structure9eo("f",[Variable90o("b");Variable900("b")])]
let expro@2 = [Value900(1l);Structuregeo("f",[Value90o(1);Variable900("b")])]

printfn "Unify test: unify902 - \n\t expr 1: %A \n\t expr 2: %A" expr@@l exproo2

let result = unify900 expro@l exproo2

let res, mgu = result

printfn "\t result: %b mgu: %A \n" res mgu

0K, that works
This is called from C# as

private static void UnificationTest()

{
UnificationLearning.tests();
Console.WriteLine("Press Enter to continue. ");
Console.ReadLine();

}

let tests() =

unify9e1l
unify902

